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The recent worldwide epidemic of COVID-19 disease, for which there
are no medications to cure it and the vaccination is still at an early
stage, led to the adoption of public health measures by governments
and populations in most of the affected countries to avoid the conta-
gion and its spread. These measures are known as nonpharmaceutical
interventions (NPIs), and their implementation clearly produces social
unrest as well as greatly affects the economy. Frequently, NPIs are
implemented with an intensity quantified in an ad hoc manner. Control
theory offers a worthwhile tool for determining the optimal intensity of
the NPIs in order to avoid the collapse of the healthcare system while
keeping them as low as possible, yielding concrete guidance to policy-
makers. A simple controller, which generates a control law that is easy
to calculate and to implement is proposed. This controller is robust to
large parametric uncertainties in the model used and to some level of
noncompliance with the NPIs.

Keywords: COVID-19 disease; SEIR model; nonlinear systems;
proportional control

I 1. Introduction

The novel SARS-CoV-2 coronavirus, which produces the disease
known as COVID-19, was first reported on December 2019 in
Wuhan, province of Hubei, China. With amazing speed it spread to
the majority of the countries in the world. The outbreak was declared
as a public health emergency of international concern by the World
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Health Organization (WHO) on January 30, 2020, and as a pan-
demic on March 11.

At the moment, there is no effective medicine to cure the disease
and vaccination is not yet widespread. Health systems only try to miti-
gate its consequences to avoid complications and fatal outcomes. This
disease has shown a great capacity of contagion and high fatality
rates (see updated reports in [1]).

Patients affected by this disease present a number of symptoms, not
all clearly identified at the moment, but which are mainly cough,
breathing difficulties, fever, loss of taste and smell and extreme tired-
ness. Frequently, patients develop a form of viral pneumonia that
requires hospitalization and artificial mechanical ventilation in inten-
sive care units. The large number of patients affected by this disease
threatens to collapse public health systems, increasing the lethality
rates due to the lack of available medical assistance.

In this context, it is very important to predict the trend of the
epidemic in order to plan effective strategies to avoid its spread and to
determine its impact. As the contagion is produced very easily by sim-
ple contact between people, several measures were adopted by the
governments, public health systems and populations in order to
reduce the transmission by reducing contact rates. Examples of these
measures, the so-called nonpharmaceutical interventions (NPIs),
include the closing of schools, churches, bars and factories, quaran-
tine or physical-distancing policies, confinement of people in their
homes and lockdown, among other social impositions that produce
discomfort and clearly harm the economy.

This goal has generated many articles and studies published
recently on the behavior of the epidemic. A number of them are
addressed to determine a mathematical model that represents the
dynamics of the different agents involved in a population affected by
the disease. The dynamics described by the model aim to make it pos-
sible to answer crucial issues, such as the maximum number of indi-
viduals who will be affected by the disease and when that maximum
will occur, and makes key predictions about the outbreak and even-
tual recovery from the epidemic. This information allows us to out-
line public policies and strategies to mitigate the social impact and
reduce the fatality rate. The seminal work [2] exemplifies and ana-
lyzes different strategies to control the transmission of the virus.

Most of the models adopted to represent the dynamical behavior of
COVID-19 are based on the susceptible, infected, recovered (SIR)
model, first introduced by Kermack and McKendrick [3]. The SIR
model is a basic representation that is widely used, which describes
key epidemiological phenomena. It assumes that the epidemic affects
a constant population of N individuals. The model neglects demogra-
phy, that is, births and deaths from other causes unrelated to the

Complex Systems, 30 © 2021



Control Approach to COVID-19 325

disease. (In Argentina, the annual death rate is 7.604 per 1000 peo-
ple [4].)

The population is broken into three non-overlapping groups corre-
sponding to the stages of the disease:

= Susceptible (S). The population susceptible to acquiring the disease.

= Infected (I). The population that has acquired the virus and can infect
other people.

» Recovered (R). The population that has recovered from infection and is
presumably no longer susceptible to the disease. (At the moment, in the
COVID-19 disease it is an open question if a recovered person can get
reinfected. Even though some cases were recently reported, the rein-
fection rate value appears to be statistically negligible based on early
evidence.)

We give a brief description of these compartments now. Susceptible
people are those who have no immunity but are not currently
infected. An individual in group S can move to group I by infection
produced through contact with an infected individual. Group I are peo
ple who can spread the disease to susceptible people. Finally, an
infected individual recovered from the disease is moved from group I
to group R. Some references (e.g., [5-7]) consider group R as
removed population, or closed cases, which includes those who are no
longer infectious after recovery and those who died from the disease.
The summation of these three compartments in the SIR model
remains constant and equal to the initial number of population N.

In order to better describe the spread of epidemics, many studies
(e.g., [8-10]) adopted the SEIR model. In the SEIR model, a fourth
group denoted as exposed (E) is added between group S and group I:

= Exposed (E). The population that has been infected with the virus, but
is not yet at an infectious stage capable of transmitting the virus to
others.

This compartment is dedicated to those people who are infectious but
cannot infect others for a period of time, namely incubation or latent
period.

Other studies (e.g., [11]) consider an additional compartment at
the end of the SIR or SEIR model to distinguish between recovered
and death cases:

= Dead (D). The population dead due to the disease.

Thus, these models become the SIRD or the SEIRD models,
respectively.
Other studies, such as [5-7, 12] consider the existence of other

groups seeking to match the models proposed with the data obtained
from the actual COVID-19 disease.
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The work presented in [13] has to be specially mentioned. This
work studies the evolution of COVID-19 in Italy, and proposes a
model denoted as SIDARTHE, where the letters correspond to eight
groups denoted as susceptible, infected, diagnosed, ailing, recognized,
threatened, healed and extinct, respectively. All of them are sub-
groups of those presented in the SEIR model. This model discrimi-
nates between detected and undetected cases of infection, either
asymptomatic or symptomatic, and also between different illness
severity, having a group for moderate or mild cases and another one
for critical cases that require hospitalization in intensive care units.
The authors affirm that the distinction between diagnosed and undiag-
nosed cases is important because undiagnosed individuals are more
likely to spread the infection than diagnosed ones, since the latter are
typically isolated, which can explain misperceptions of the case fatal-
ity rate and the seriousness of the epidemic. The fact of considering
more groups in the SIDARTHE model than in the SEIR model allows
a better discrimination between the different agents involved in the
evolution of the epidemic, as well as a better differentiation of the
role played by each one. In [7] the authors also consider a model that
discriminates between reported and unreported symptomatic cases.
However, the fact of increasing the number of groups implies the
knowledge of more rates, probabilities and constants that determine
the dynamics between the groups. Many of these parameters are diffi-
cult to know in practice, as is estimating the population of some
groups, such as ailing (symptomatic infected undetected). The authors
choose these constants and quantities to fit the values calculated by
their model to the actual data. In order to achieve the goal of better
determining public policies, we understand that it is not necessary to
have some of these groups in the model used.

In order to better guide the determination of public policies to miti-
gate the spread of the virus, we propose the use of control theory.

Control theory has been successfully implemented in several areas
other than physical systems control, for which it was initially
designed. For example, in economics, ecological and biological
systems, many studies demonstrate the success of its implementation.
Of course, regardless of the area focused on, a good control strategy
depends on the adequate modeling of the dynamical system to be
controlled.

The proposal to use control in this epidemic is not new. It was first
presented in [10]. In this paper, the authors use the SEIR model to
show that a simple feedback law can manage the response to the
pandemic for maximum survival while containing the damage to the
economy. However, although the authors illustrate with several exam-
ples the benefits of using feedback control, they do not present the
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mathematical control laws nor do they prove the convergence of the
trajectories in the closed-loop system. Examples are implemented by
means of several computational experiments that illustrate the differ-
ent strategies proposed. In [14] an open-loop control action based on
two different constant levels of NPIs is applied on the SIR model. The
authors analytically calculate the peak of infected people as a function
of the day of application of the NPIs and of the duration of these
policies. Simulations were also carried out for other epidemic dissemi-
nation models proposed in the literature.

In this paper, we propose the use of a simple controller that pro-
duces a control signal proportional to an adequate combination of the
process variables. Although this is not a proportional controller, since
the control signal is not a gain times the values of the process vari-
ables, we will denote it as a proportional controller with notation
abuse. Proportional control is a standard tool in control theory to
calculate the control action. This variable guides how to determine
NPIs in order to avoid the collapse of the health system while reduc-
ing the damage to the society and the economy that NPIs inevitably
produce. Partial and preliminary versions of this paper have been pub-
lished in [135, 16].

I 2. The SEIHRD Model

This section is addressed to adequately modeling the disease. A
suitable model should avoid making unnecessary classifications in
order to obtain key data on the behavior of the epidemic. This data
includes number of deaths, maximum number of infected people and
time at which the maximum infection rate will occur, among other
information useful to prevent and reduce the damage produced by the
outbreak.

The SEIR model assumes that exposed people have been infected
but are not able to transmit the virus before a latency period. We con-
sider that those people continue to be in the susceptible group S,
whereas we consider group E as people who have been infected but
still have no symptoms and are able to transmit the virus. Part of this
group will present symptoms after an incubation time (moving to
group I) and another part will remain asymptomatic. Asymptomatic
people who have been diagnosed as positive also are considered in
group I, so this group includes all known positive cases, symptomatic
or not. Note that our classification highlights the distinction between
diagnosed and undiagnosed cases, whether they are symptomatic or
not, because reported positive cases tend to be isolated and their
contagion capacity is greatly reduced.
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In addition, a critical issue is the number of infected people who
need hospitalization, because the public policies must try to keep this
number lower than the capacity of the health care system in order to
avoid its collapse. Thus we define an extra group:

» Hospitalized (H). The infected population who need hospitalization.

In group H we do not differentiate between people hospitalized in
mild condition and those in intensive care units (ICUs), despite the
fact that the number of people in the last subgroup is a critical prob-
lem due to an even more limited capacity in ICUs. We also consider
the population number N as a constant, as the SEIR model does.

The progression of this epidemic can be modeled by the rate pro-
cesses described in Figure 1.

ap E Yp1 dp2 H £p3 D
‘e
exposed hospitalized dead

&(1- p1) n(1-p2)

S

susceptible

u(1- ps)

R

recovered

Figure 1. Rate processes that describe the progress between the groups in the
SEIHRD model.

The proposed SEIHRD model for the spread of the COVID-19 dis-
ease in a uniform population is given by the following deterministic
equations, which are normalized with respect to the total
population N:

S= —(1 - u)(ozSE +ﬁSI) )

E = (1 - u)(@SE +BSI) - (yp; + {1 - py))E
I'=yp E=(op, +n(1-p,))I
H = 6py1 = (ep3 +u(1 - p3))H
R=vS+{(1-p;)E+n(1-py)l+p(1-ps3)H
D =ep;H.

€]

The groups S, E, I, R, H and D are the state variables of the
dynamical system equation (1). They are always non-negative. The

time derivatives R and D are also non-negative, because the number

of recovered and dead people cannot decrease, whereas S is always
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non-positive, because we consider that recovered people cannot be
reinfected. This dynamic is represented in Figure 1 because the states
R and D only have input arrows and the state S only has output
arrows. Equation (2) is a nonlinear system normalized with respect to
the constant population N. Hence S+E+I+H+R+D =1 and
S+E+I+H+R+D=0.

The rate processes are modeled as follows.

» oSE and gSI are the transmission rates of the virus between the suscepti-
ble and the exposed population (respectively, infected population). @
and g are the probability of disease transmission in a single contact
with exposed (infected) people times the average daily number of con-
tacts per person, and they have units of 1 /day. Typically, « is greater
than g, assuming that people tend to avoid contact with subjects show-
ing symptoms or diagnosed as positive. Contacts between susceptible
people and hospitalized people are neglected, except for healthcare
workers. The probability of contagion from dead people is also
neglected, despite the fact that some cases have been reported recently.
Finally, recovered people are no longer able to transmit the virus.

= u [0, 1] is the intensity of NPIs. # = 0 means no intervention and the
epidemic grows completely free, whereas # = 1 implies total elimina-
tion of the spread of the disease.

» v is the vaccination rate, at which susceptible people became unable to
be infected. Unfortunately, at this early stage of vaccination in most
countries, this rate can be neglected, so we consider v = 0.

= p, is the probability that exposed people develop symptoms, y~1 is the
average period to develop symptoms, and ¢! is the average time to
overcome the disease, staying asymptomatic.

= p, is the probability that infected people with symptoms require hospi-
talization, 6-1 is the average time between infection and the need for
hospitalization, and 71 is the average time in which infected people
recover without hospitalization.

= p; is the probability of hospitalized people dying, e! is the average
time between hospitalization and death, and 1 is the average time to
recover after hospitalization.

The parameters used in equation (1) are not very precisely deter-
mined and even differ greatly in the literature consulted (see [2, 5, 7,
8, 13, 17-19] among many other references). Most of the models
adopted in the references adjust these parameters to fit real data from
different countries. It must be taken into account that some of these
parameters, mainly @ and B, are not independent of the populations
and their general state of health or their actions.

The parameters a and B are related to the basic reproduction num-
ber R, defined as the expected number of secondary cases produced

by a single (typical) infection in a completely susceptible population
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[18]. R, is not a fixed number, depending as it does on such factors as
the density of a community, the general health of its population, or its
medical infrastructure [10]. This is the most important parameter to
understand the spread of an epidemic. If R, > 1, the epidemic grows
and the number of infected people increases. If R, < 1, the epidemic
decreases and after a certain time disappears, when a large enough
number of people acquire antibodies and the so-called herd immunity
occurs.

In the actual COVID-19 disease, R, was determined to be 2.6 in
Wuhan, China [10] (between 2.2 and 2.7 according to [20]), ranging
from 2.76 to 3.25 in Italy [10] and even close to 3.28 [17]. An impor-
tant remark is that many studies consider R, to depend on the NPIs,
admitting that these actions tend to reduce this number because the
contact rates between people decrease. Note that NPIs always occur
even in countries where no government action has been taken,
because people spontaneously tend to stay at home and to avoid
contact with others. This fact explains the disparity of this number in
different countries and reported in the references (see [17]).

Here, we consider R, as a constant reproduction number in the
absence of any external action, that is, as if the disease could spread
completely freely, which, obviously, is an unreal scenario. Specifically,
the relation between the rates @ and 8 and R, can be calculated in
equation (1) as in [13, 18], resulting in

a
R, = . Byb, ' )
+vp1 =19 (+py =)+ — P10

The intensity of the NPIs is considered in the variable #, which
determines the rate at which susceptible people become exposed and
infected.

Several studies [5, 6, 9, 12] consider these parameters as time
dependent, because incorporated in these parameters is the impact of
government actions among other NPIs. Here we will consider them as
constants, because the NPIs will be considered in the control action u;
hence, equation (1) is a nonlinear time-invariant system.

The incubation period is estimated as y~1 = 5.1 days [2, 8, 21].

The probability of developing symptoms p; will be roughly
estimated as 50% [2, 22]. (This probability is the most difficult to
determine. According to [23], up to 80% of the cases could be asymp-
tomatic.)

The period to overcome the disease without presenting symptoms
is -1 = 14.7 days (deduced from [13]).

The infectious period with no need for hospitalization is widely
accepted as 14 days,son =1 / 14.

Complex Systems, 30 © 2021



Control Approach to COVID-19 331

The probability to need hospitalization after the infection is
P, = 19% [23, 5, 6], and the time from symptom onset to hospitaliza-
tion is 6~1 = 5.5 days [20].

The probability to die after hospitalization is p; = 15% according
to [1, 2], and the average time to die is e ! = 11.2 days [20].

The average time to recovery after hospitalization is u~! =16
days [2].

Finally, as noted earlier, we neglect the vaccination rate, so v = 0.

Remark 1. Most of these parameters are subject to large inaccuracies,
and they differ greatly in the literature consulted. However, as we will
show below, the proposed control method is robust for such uncer-
tainties as well as for measurement errors characterized as unreported
or undiagnosed cases and inaccuracies in the quantities of the groups.

I 2.1 Analysis of the SEIHRD Model
Equation (1) is a normalized nonlinear system. It presents only one

equilibrium point at [SEIHRD]|" = [EOOOE], where R and D are

positive constants and S is a non-negative constant such that

S+R+D = 1. These constants depend on the initial conditions, the
transmission rates and the constants @ and 3. The lower the reproduc-
tion number R, the lower the final number of deaths and people
recovered. This equilibrium point may be reached by the trajectories
described by the states in equation (1) in infinite time. Note that this
equilibrium point is stable, because once E = I = H = 0, the virus is
no longer circulating among the population, and hence the states S, R
and D remain constant.

In order to better understand the system behavior, we divide equa-
tion (1) into the following three subsystems

S=-u (3a)
X = Ax+bu (3b)
y=Cyx (3¢)
where

u= S(l - u)Clx

x = [EIH]T

y = [RD]"
C, = [a,BO]
¢, = [0 =pa) Al=po) w1 =p3)|

0 0 €p3
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In the subsystem (3b), the matrix A and the vector b are defined as

—(Wl +§(1—P1)) 0 0
A= 2 —(6py +n(1 - p,)) 0
0 op, _(€P3 +N(1 - P3))
b =[100]".

Note that [SxTyT]| = [SEIHRD]T e R,

The subsystem (3a) is nonlinear, because of the product Sx; the
other ones are linear systems. In the system (3b), A is a lower triangu-
lar matrix. Its eigenvalues are given by the entries on its main diago-
nal, which are real and strictly negative, whatever the values of the
constants used. Therefore, the subsystem (3b) is globally asymptoti-
cally stable [24, c. 6].

Note that the goal of the control strategy is not to lead equa-
tion (1) to its equilibrium point, but to keep the number of hospital-
ized people small enough in order to avoid the collapse of the health
care system, as will be shown in the following section.

I 3. The Control Strategy

We propose the use of control theory to determine public NPIs in
order to control the evolution of the epidemic, avoiding the collapse
of health care systems while minimizing harmful effects on the popula-
tion and on the economy.

As noted in [10], “a properly designed feedback-based policy that
takes into account both dynamics and uncertainty can deliver a stable
result while keeping the hospitalization rate within a desired approxi-
mate range. Furthermore, keeping the rate within such a range for a
prolonged period allows a society to slowly and safely increase the
percentage of people who have some sort of antibodies to the disease
because they have either suffered it or they have been vaccinated,
preferably the latter.”

The action law is given by the control variable # in equation (1).
No intervention from the public health agencies means # = 0, and the
disease evolves naturally without control. On the other hand # =1
means the total impossibility of transmitting the virus, which, of
course, is an unreal scenario.

There are several possible choices of the reference signal or set
point of the control system. One of them may be a small enough
number of hospitalized people to not affect the capacity of the ICUs
available in the health care system. This reference signal may be
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nonconstant; it may increase due to the increase of available beds by
capacity additions in the health care system, by creation of provisory
field hospitals, among other similar measures. In addition, we must
keep in mind that the quantities of each group described in equa-
tion (1) are subject to large inaccuracies due to unreported or undiag-
nosed cases, except for the number of people diagnosed as positive (I)
which is quite well known, the number of hospitalized people (H) and
the number of deaths (D). For that reason, the output variable to be
fed back only can be the infected population I or the hospitalized pop-
ulation H.

Hence, the goal of the control action is to keep the number of
hospitalized people lower than the set point, minimizing external
interventions that produce social discomfort and clearly harm the
economy.

Therefore, the control action should aim to solve the following con-
strained optimization problem:

min f u(t)or
T 4)
subjectto H < SP

where T is a considered period and SP is the reference signal (or set
point, in the case where it is considered as a constant). Generally, it is
not possible to obtain an analytical expression of the objective func-
tion of a constrained minimization problem subject to the dynamics
of a nonlinear system. Therefore, solving equation (4) to obtain an
expression of the control signal u(?) is not possible. In the experiments
shown later, the scalar gain of the controller will be tuned experimen-
tally in order to minimize the area under the curve u versus ¢.

As a reference, the WHO recommends a number of 80 hospital
beds per 10000 population, which means an index of 0.008, or
0.8%. This number will be used as the SP of the closed-loop control
system.

We must also bear in mind that NPIs impact physical contacts
between susceptible and infected or exposed people. When an individ-
ual is infected, hospitalization may be required after 6~! = 5.5 days
or after -1 +y~1 = 10.6 days on average if the infection was recent.
Hence, there exists a delay between the adoption of NPIs and their
consequences on hospitalization of people. If the control action is
calculated based only on the number of hospitalized people, the fol-
lowing 10.6 days, too many people may require hospitalization,
exceeding the capacity for medical care. In control jargon, it means
that for almost two weeks the system is operating in an open loop.
Therefore, the control action should also be calculated as a function
of the number of infected people I (the number of exposed people E is
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quite unknown) in order to avoid future hospitalization requirements
in the next 10.6 days at most. This strategy emulates a kind of predic-
tive control.

Figure 2 shows the closed-loop control system. The process vari-
ables are the infected population I and the hospitalized population H.
The scalar control signal u is the intensity of the NPIs.

[dS/dt
dE/dt
di/dt
dH/dt
sp dRr/dt

+ u SEIHRD db/dt)
Q controller )
model

[SEIHRDJ

Figure 2. Block diagram of the closed-loop control system.

Of course, in practical situations it is necessary to determine which
actions and at what level correspond to a certain intensity of NPIs,
but this issue is outside the scope of this paper.

Next, we show the results of different strategies of NPIs applied on
the SETHRD model.

I 3.1 An Open-Loop Control System
In this first series of experiments, we apply a constant control action
u; that is, the system shown in Figure 2 is an open-loop control one.

We consider as initial conditions I = E = 0.001, H=R =D = 0,
so § = 0.998; that is, 0.1% of the population is diagnosed as positive
on the first day and 0.1% of the population is asymptomatic infected.

During the first days of the epidemic, it was logical to consider that
both exposed and infected people could spread the virus at the same
rate because the contagion between humans was not known. Then,
the disease was able to spread in a completely free scenario, in which
no action was taken. This scenario has been called “naif® by several
authors [5, 6].

Using equation (2) with Ry=2.8 as in [5, 6], and assuming that no
actions are taken during the epidemic, then @« = 8 = 0.1786. The evo-
lution of exposed, infected, hospitalized and dead people in this case
is shown in Figure 3.

In this naif scenario, and using as initial condition 1 infected and 1
exposed person for different population quantities (N > 1000), the
maximum values are always 17.75% for exposed people and 15.75%
for infected people, and the times when these maximums are reached
depend on the population value N as shown in Figure 4. The delay
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between both maximum values is a constant period of 9 days. Addi-
tionally, the number of dead people forecasted by this model is about
5.17% of the total population.

ox—m

1 1 ‘\

0 20 40 60 80 100 120 140 160 180 200
days since initial condition

Figure 3. Population of exposed, infected, hospitalized and deaths group with
no NPL Naif scenario.

140 T T T

=]

@
S

days since initial condition
® © o =
o o (=] o o

N
=}

60

50 . . .
108 104 10° 108 107
population N

Figure 4. Times when exposed and infected groups reach the maximum val-
ues. Naif scenario.

Clearly, this naif scenario seems to be unrealistic since people tend
to avoid contact with subjects showing symptoms or diagnosed as
positive due to the severity of the COVID-19 disease. In consequence,
as we stated before, in a more realistic scenario « is greater than 8. In
the rest of this paper, we consider 8 = « / 2 to take into account this
assumption.

https://doi.org/10.25088/ComplexSystems.30.3.323



336 F. Pazos and F. E. Felicioni

Figure 5 is an area plot that shows the quantities of every group as
time progresses with no NPIs being taken for illustrative purposes

B=a/2).

0 50 100 150 200 250
days from the first case

Figure 5. Population of each group with no NPL. g = a /2.

Figure 6 shows the evolution of the hospitalized group with differ-
ent constant intensities of NPIs # and the proposed SP. Table 1
reports some results extracted from these simulations.

0.05 : .
H (u=0)

0.045 - H (u=0.4*(t-28)) | ]
H (u=0.4)

0041 — — - SP=0.008 1

0.035 | 1

0.03 | 1

0.025 F .

0.02f 1

0015 F 1

001 f 1

0.005 | 1

0
0 50 100 150 200 250 300 350

days since initial condition

Figure 6. Population of the hospitalized group without NPI (blue), with an
NPI of 40% intensity (yellow), with an intervention of 40% intensity applied
four weeks after the appearance of the first case (light green) and SP (red).

B:a/Z.
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u=0 |u=04 |u=04step(-28)

final rate of deaths 0.0457 {0.01425 |0.022
maximum rate of hospitalized |0.0496 |0.00801 |0.0120
area under the curve u versus ¢ |0 100 88.8

Table 1. Main results of several constant NPIs on the SEIHRD model after
250 days.

The results presented in Table 1 show that if no mitigation policy
is adopted (# = 0), approximately 81% of the population will be
infected and 4.57% will die. On the other hand, a minorly aggressive
NPL only 40% in intensity, is effective in reducing the final number
of deaths as well as the maximum number of people hospitalized,
which is a crucial issue in order not to collapse the health system (the
maximum value of H reaches the SP). Moreover, a late application of
this strategy, after more than four weeks since the first case arose,
also significantly reduces these numbers.

I 3.2 A Proportional Controller

In this section, we simulate the behavior of the trajectories described
by the normalized system equation (1) subject to a control action pro-
portional to an adequate combination of the process variables. The
objective of the control action is that the number of hospitalized
people does not exceed the number of available beds. Of course, this
number is highly variable in different countries, and can be increased
during the duration of the epidemic with the construction of field hos-
pitals, among other resources.

As noted in Section 3, adopting as a feedback variable only the
number of hospitalized people H may lead to an overload of the
health system in the next 10.6 days, for which a kind of predictive
control that considers the number of infected people I must be used.
Not all infected people need hospitalization. Most of the symptomatic
cases are mild and remain mild in severity (1 —p, = 81%) [20, 23]. So
we consider that p, = 19% of infected people will need hospitaliza-
tion in the following 6-1 = 5.5 days. This number plus the number of
people already hospitalized H must remain below the set point. We
neglect the number of beds occupied by patients hospitalized for other
diseases.

The proportional control variable proposed is

SP-H-p,l
= kp(l - —”ZJ e o, 1] (5)
SP-H

where k,, is a scalar gain with values between [O, 1].
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Note that if I = 0, then # = 0 and there is no need for public inter-
vention because no one is going to require hospitalization for the next
5.5 days, and with k, = 1, if a percentage of 19% of the infected peo-

ple equals the number of available beds SP — H, then # = 1, which
means that the public intervention must completely avoid the trans-
mission of the virus because all these people will require hospital-
ization after 6! = 5.5 days on average. Another point of view is to
consider that this is a tracking trajectory problem, with a time-
dependent reference signal equal to 7(z) = SP — H(%).

We consider the same initial conditions as those used in the former
series of experiments, I = E = 0.001; that is, 0.1% of the population
infected and presenting symptoms on the first day and 0.1% of the
population infected and asymptomatic.

Figure 7 shows the trajectories of the state variables versus time
with a gain k, = 1. Note that the number of people hospitalized is

always smaller than the set point. Figure 8 shows the control signal
versus time.

0 50 100 150 200 250 0 50 100 150 200 250
days from the first case days from the first case

@) (b)

Figure 7. (a) Evolution of every group over time with a proportional control
action with gain k, = 1. (b) A zoom of (a). Set point equal to 0.008.

The control signal presents a maximum value of 0.8227, and the
area under the curve of the control signal versus time is 98.8829.
Notice that the smaller this action, the less the damage to the popula-
tion and the economy. The constant control signal equal to 0.4 pre-
sents an area under the curve equal to 100 and equal to 88.8 when it
is applied after four weeks (see Table 1).

We must bear in mind that NPIs are determined by government or
popular decisions and hardly can change every day as the control sig-
nal calculated by the proportional controller does. Thus, we consider
the application of NPIs with the intensity shown in Figure 9. The
amplitudes and times of this control signal were obtained from that

Complex Systems, 30 © 2021



Control Approach to COVID-19 339

shown in Figure 8. The criterion used to generate this step-shaped con-
trol signal was as follows: when the control signal calculated in equa-
tion (5) reaches 80% of the next maximum value, the step-shaped
control signal grows up to this maximum value, and when the control
signal # decays to 120% of the next minimum value, the step-shaped
control signal decreases to that minimum value. The detail of the
trajectories of the states presented in Figure 10 shows that there are
no significant differences in the results obtained by the controllers.
The maximum number of hospitalized people is 0.0057, the final
number of deaths is 0.0132, and the area under the curve u versus
time is 87.38.

0.9
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0 50 100 150 200 250

days from the first case

Figure 8. Control signal intensity over time using a proportional controller.
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Figure 9. Step-shaped control signal over time wusing a proportional
controller.
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Figure 10. Detail of the trajectories of each state variable using a step-shaped
control signal.

Table 2 shows the main results of the application of NPIs calcu-
lated using equation (5) with different values of the scalar gain k,,.

k, =1 |k, = 1(step-shaped u) [k, = 0.7 |k, = 0.5

final rate of deaths [0.0127 ]0.0132 0.0144 |0.0157
maximum rate 0.0054 10.0057 0.0064 0.0074
of hospitalized

area under the 98.8829 |87.38 94.8331 [91.2401

curve u# versus ¢

Table 2. Main results of several proportional NPIs on the SEIHRD model
after 250 days, SP = 0.008.

3.3 Simulations with Uncertain Parameters and Considering Some
I Noncompliance with Nonpharmaceutical Interventions

In this section, we consider the more realistic situation in which the
parameters are partially unknown. As mentioned in Section 2, there
are large uncertainties in the parameters—they differ a lot according
to the references researched and are very different according to the
country studied.

In this series of experiments, the parameter @ is randomly chosen
between 0.15 and 0.6. The parameter § is also randomly chosen
between 0.008 and 0.04. The incubation time y~! is between 2 and 6
days. The probability to present symptoms p; is between 40% and
80%. The recovery time is between 14 and 16 days, for both symp-
tomatic and asymptomatic people. The probability to be hospitalized
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P, is considered as a Gaussian distribution function of mean 0.19 and

standard deviation of 0.1. The time to be hospitalized §~! is chosen to
be between 3 and 7 days. The probability to die p; is between 10%

and 16%. The time to die € ! is between 3 and 12 days. Finally, the
recovery time from hospitalization u~! is randomly chosen to be
between 10 and 20 days.

In addition, we also consider that there exists some noncompliance
with NPIs. So we apply to equation (1) a control signal with Gaussian
distribution of mean 80% of that calculated in equation (5) with stan-
dard deviation of 10%; that is, we assume that there is 20% on aver-
age noncompliance with the public measures adopted.

The initial conditions are also I =E = 0.001 and the gain is
k, = 1. Figure 11 shows the trajectories of the states of equation (1)
during 250 days since the first symptomatic case arose. Figure 12
shows the control signal versus time. Table 3 reports some results

extracted from this series of simulations.

0 50 100 150 200 250 0 50 100 150
days from the first case days from the first case

(@) (b)

Figure 11. (a) Evolution of every group over time with a proportional control
action with gain k, = 1 and considering 20% of noncompliance of the NPIs

policies on average. (b) A zoom of (a). Set point equal to 0.008.

k,=1 |k, =0.7 |k, =0.5
final rate of deaths 0.0225 |0.0248 |0.0735
maximum rate of hospitalized [0.0067 |0.0076 |0.0508
area under the curve u versus ¢ |73.7867 |70.8435 |77.4710

Table 3. Main results of several proportional NPIs on the SEIHRD model
after 250 days considering 20% of noncompliance with the NPIs on average,
SP = 0.008.
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0 50 100 150 200 250
days from the first case

Figure 12. Control signal over time using a proportional controller and con-
sidering 20% of noncompliance of the NPIs policies on average. The blue
curve is that calculated in equation (5), and the red curve is the control signal
considering the random noncompliance.

The similarity of the results reported in Tables 2 and 3, as well as
the trajectories shown in Figures 7 and 11, show that the propor-
tional controller is robust to parameter uncertainties and to some
noncompliance with the NPIs, which, of course, always occurs in
practice.

| 3.4 Closed-Loop Analysis
In this section we analyze the nonlinear system equation (1) subject to
the control action equation (5). Without loss of generality, we con-
sider k£, = 1 for simplicity.
p

We assume as initial conditions H(O) = R(O) = D(O) =0, I(O) > 0,
E(O) > 0, which implies S(O) =1- E(O) - I(O) < 1. We also consider
P, (0) < SP, and hence M(O) is slightly greater than 0.

All the state equations presented in equation (1) are continuous.
If the number of infected people and of the hospitalized people
increases until a level such that at a time #;, H(#)) +p,I(t;) = SP,

then u(t;) =1, which implies S(t]) =0 (with v=0) and E(#) =
=(rp1 + (1 - p1))EG) < 0.

From equation (3a), #(¢;) = 0, and from equation (3b), X = Ax at
t;, which is a globally exponentially stable linear system according to
the analysis made in Section 2.1 (all its eigenvalues are strictly nega-
tive real numbers). As E(#;) < 0, due to the lower triangular structure
of the matrix A, which has the entries on its main diagonal strictly
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negative and the entries on the lower subdiagonal non-negative, it
yields that the other two components of the vector x, I(z;) and H(#)
are strictly negative. Hence, H(?) + p,1(¢) does not increase above SP
for all ¢ > 0.

With this result, we formulate the following lemma.

Lemma 1. In the nonlinear system equation (1) subject to the control
action equation (5), with the initial conditions H(O) =0, pZI(O) < SP,
the signal H(¢) + p,1(t) < SP for all £ > 0.

I 4. Conclusion

The proportional controller proposed to guide the adoption of non-
pharmaceutical interventions (NPIs) showed its efficiency to keep the
number of hospitalized people below a set point given by the health
system capacity. Moreover, this very simple strategy is robust to
uncertain parameters and to some level of noncompliance with public
measures.

The control signal calculated by this method aims to guide the
adoption of NPIs in order to minimize the social impact and the eco-
nomic damages.

As an example, recently the Argentine government relaxed some
restrictions adopted in the quarantine period, allowing more eco-
nomic and recreational activities in some cities. The only criterion
used to adopt this measure was the number of days in which the num-
ber of infected people doubled (the so-called doubling time). Even
though this decision also can be considered as a closed-loop control
action, the criterion adopted is a little improvised.

An open question is how to translate the rate of intensity of the
NPIs calculated by the controller into concrete actions adopted by
governments or public health authorities. Moreover, we must bear in
mind that these measures cannot be continuously varied along the
time parameter, as the control signal is, but they are decisions that
should remain valid for at least a few days. However, although this
issue is beyond the scope of this paper, some decisions can be
adjusted every day, for example, the number of individuals with per-
mission to leave their homes or the number of people allowed to enter
a store, as suggested by the computed control effort equation (5).

Finally, as mentioned in Section 3, it is not possible to find an
analytical solution of equation (4). However, the problem can be
focused on a nonlinear programming one, where the objective func-
tion is subject to the dynamics of the nonlinear system, among other
additional constraints such as H < SP, for example. The values of the
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state variables that minimize the objective function over the consid-
ered time horizon can be calculated by a suitable solver, as proposed
in [25], in order to obtain the value of the control signal at each
instant of time. This research is proposed as a future project.
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