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Abstract. BIG DATA systems are becoming more and more present 
in our everyday life generating data and information that needs to be 
explored and analyzed. In this sense, formal verification tools and tech­
niques must provide solutions to face with these new challenges since 
they been pointed out as one of the most needed software engineering 
activities to consolidate BIG DATA modern systems. In this work we 
present a parallel implementation of a tableau algorithm aiming to im­
prove the performance of our formal verification scheme. The pursued 
objective behind this transformation is to adapt our framework to deal 
with BIG DATA systems.
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1 Introduction

Modern systems reside in a world where everything is connected and informa­
tion is generated, consumed and exchanged at a surprisingly increasing growth 
rate. This enormous amount of data and information needs to be explored and 
analyzed, activities that originated new disciplines such as BIG DATA [34,16] or 
Data Science [32] whereas other important areas such as Artificial Intelligence 
turned their attention into this topic applying techniques such as Automated 
Reasoning [27], Machine Learning [2] or Neural Networks [22],

In the last years the Software Engineering community did also make an effort 
to leverage on this emerging topic. Several works like [24,15, 26, 23, 30, 25] thor­
oughly present a complete state of the art stating how software engineering tools, 
methodologies and techniques are applied and adapted to deal with BIG DATA 
implications, covering all the very well known software developing phases, from 
requirements gathering to product release, including modeling, design, testing, 
validation and verification of Big Data Software Systems. In particular, all the 
mentioned approaches pinpoint the urgent need of a new arising of more re­
search lines focusing on the formal verification of BIG DATA systems. This is a 
very challenging path to take since it involves dealing with rigorous performance 
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requirements in a context where data and information is highly informal and 
unstructured [25,24,20],

In this sense, approaches like [10] try to expand current formal verification 
tools such as model checking [17] to cope with new architectures for BIG DATA 
systems such as Cloud Computing [19] and distributed environments. Other ap­
proaches involves a classic migration from sequential to parallel model checking 
[11,13,7,8,14], However, a prior step in the formal verification road has been 
somehow neglected, which is the way the behavioral properties to be verified in 
the model checker are built and specified [31,18],

Given this context in this work we present a parallel implementation of a 
tableau algorithm which translates graphical scenarios specified in the FVS for­
mal specification language [3,4] describing behavioral properties into Biichi Au­
tomata. The automata built by the tableau can latter be used to feed a model 
checker in order to perform verification tasks [3], FVS (Feather weight Visual 
Scenarios) is a formal and graphical specification language which can be used to 
specify, verify and synthesize behavior [4,5], It denotes a very rich and expres­
sive notation (being for example more expressive than Linear Temporal Logics) 
and linear as well as branching-time type properties can be specified [3], In or­
der to adapt FVS for formal verification in BIG DATA system in this work we 
parallelized the tableau algorithm. This new parallel implementation of 
the tableau enables the possibility for FVS to make a solid contribu­
tion for the formal verification phase applied to BIG DATA systems. 
We developed three different implementations of the tableau algorithm, one us­
ing Java threads and other two employing two well known libraries for parallel 
programming: Open MPI [33] and MP J Express [29], Since our framework is 
developed using the Java programming language we relied on Java oriented 
tools. We compared the three versions against each other and against the se­
quential version of the tableau taking as a case study a complex and industrial 
relevant protocol verification: the MS-NNS protocol [1], a lightweight option to 
provide authenticated and confidential communication between a server and a 
client over a TCP connection. Although this early results are preliminaries, we 
believe are encouraging enough to continue exploring FVS’s contributions for 
formal verification in BIG DATA systems.

The rest of this paper is structured as follows. Section 2 briefly presents 
the FVS specification language and Section 3 introduces the sequential version 
of the tableau. Section 4 exhibits the details behind the parallelization of the 
tableau, considering three different versions, a performance comparison between 
them and some final observations. Finally, Section 5 comments some related and 
future work while Section 6 concludes this work highlighting its conclusions.

2 Feather weight Visual Scenarios

In this section we will informally describe the standing features of FVS. The 
reader is referred to [3] for a formal characterization of the language. FVS is a 
graphical language based on scenarios. Scenarios are partial order of events, con­
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sisting of points, which are labeled with a. logic formula, expressing the possible 
events occurring at that point, and arrows connecting them. An arrow between 
two points indicates precedence. For instance, in figure l-(a) A-event precedes 
S-event. In figure 1-b the scenario captures the very next S-event following an 
A-event, and not any other S-event. Events labeling an arrow are interpreted 
as forbidden events between both points. In figure 1-c A-event precedes S-event 
such that C-event does not occur between them. Finally, FVS features aliasing 
between points. Scenario in 1-d indicates that a. point labeled with A is also 
labeled with A A B. It is worth noticing that A-event is repeated on the labeling 
of the second point just because of FVS formal synta.xis.

J B A B•----** ••--------------

(a) Precedence (b) Next

4 B
w Not(C* »•

(c) Restricting behavior

A J and B

(d) Aliasing points

Fig. 1. Basic Elements in FVS

We now introduce the concept of FVS rules, a. core concept in the language. 
Roughly speaking, a. rule is divided into two parts: a. scenario playing the role 
of an antecedent and at least one scenario playing the role of a. consequent. The 
intuition is that whenever a. trace “matches” a. given antecedent scenario, then 
it must also match at least one of the consequents. In other words, rules take 
the form of an implication: an antecedent scenario and one or more consequent 
scenarios. Graphically, the antecedent is shown in black, and consequents in grey. 
Since a. rule can feature more than one consequent, elements which do not belong 
to the antecedent scenario are numbered to identify the consequent they belong 
to. An example is shown in figure 2. The rule describes requirements for a. valid 
writing pipe operation. For each write event, then it must be the case that either 
the pipe did not reach its maximum capacity since it was ready to perform (Con­
sequent 1) or the pipe did reach its capacity, but another component performed 
a. read over the pipe (making the pipe available again) afterwards and the pipe 
capacity did not reach again its maximum (Consequent 2).

3 Tableau Algorithm: From FVS Scenarios to Biichi 
Automata

We now present some basic concepts to understand the tableau algorithm while 
the reader is referred to [3] for a. more detailed version of it. From a. formal 
point of view, FVS scenarios can be defined as morphisms from the antecedent 
to the consequent. The algorithm relies on the notion of situations [3], In few 
words, a. situation represents for a. given rule possible combinations of partial 
matches from the antecedent to the consequent. Consider the following example
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Fig. 2. An F VS rule example

FFrzte
e

in figure 3. In this case, a. rule with two consequents is shown. Furthermore, 
there are three partial matches for consequent one, and two for consequent two. 
Therefore, 771 consists of the three morphisms in the first column (si, <7i, <7i), 
whereas 772 consists of the two morphisms in the second column

Fig. 3. A situation example

V

Given a. rule R, the tableau builds a. Biichi Automaton B = (E, S, S°, A, F) 
such that E constitutes minterms over Er and the set of states S are triples 
(Tr x bool x PC(Er)), where PCfE) is a. function that labels each point with 
a. given formula. The set Tr associated to a. state (a. set of situations 7/1. de­
noted situations (S), symbolically represents all the possible combination of par­
tial matches obtained up to that state from the antecedent to each consequent. 
The second term of the triple identify accepting states. This boolean variable 
is set to true when the pattern is completely matched and will make the state 
transient. Finally, a. third element is needed to maintain future obligations of 
the trace. These formulas are needed when rules predicate about conditions that 
must hold until the end of the trace.

The pseudo-code sketched in Algorithm 1 computes the successor states for 
transition relation A. Starting from the initial state ((0, false,true')), the au­
tomata. will try to incrementally “construct” the pattern as events, represented 
by minterms, occurs. For every minterm, algorithm 1 computes all possible 
matchings considering matchings in the antecedent and also in each consequent. 
This is obtained trough two auxiliary algorithms, aduanceAntecedent(Yme 5) and 
advanceConsequent (line 6). Line 7 analyzes if any successor reaches a. trap sit.- 
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nation, a. situation where the antecedent has been matched (a. morphism such 
that A = A), but matching for all consequents is known unfeasible. Lines 8 
and 9 check if any consequent has been matched by the last move. This is, 
goa,lmatched\i\ = true if and only if consequent Cf is matched. Line 10 analyzes 
if the next state is an accepting state: a. consequent has been matched and it is 
not a. trap situation. Finally, line 11 returns the expected output.

1 Algorithm Succ(S : State,m : minterm') : set of states;
2 Precondition : m A obligations(S) is satisfiable;
3 newSits := 0;
4 foreach 77 E Situations(S) do
5 newSits := add(newSits,aduanceAntecedent(g,m')');
6 newSits := ad.dfnewSits, advanceConsequent(q, m));

7 trapSituation : E newSits SiAj E [1../?] <7’ : A —> C*  E 77 A A = A A C'J it
is not a. configuration of Cf;

8 foreach j E [1..??] do
9 goalmalciu d i := S?7 E situations (S) A

g) : À G*  E i] AC*  Cj U P*  Am E (RfIC*))  A C*  U A*  = Cj;

10 goalMatched := (3j (<7oa/777atc/?ed[j])) A (-vtrapSituation') ;
11 return { (newSits, GM, Obligations') such that

GM —>■ goalMatched A GM = true —>■ 3j (goalmat ched(j\) A Obligations =
Obligations (S') A /\jcI Tt(Cj) A GM = false —>■ Obligations = Obligations(S)

Algorithm 1: Successor states

As an example of the application of the algorithm consider the FVS rule in 
Figure 4, which represents a. classic instantiation of the Response pattern [21], 
The automaton built by the tableau is depicted in Figure 5.

o
—► 1

1

p

Fig. 4. An FVS Rule for the Response Pattern

4 Parallel Tableau Implementation

We now describe the main features of the parallel algorithm. We developed three 
different versions of it, whose implementations details are presented in Section 
4.1. Finally, Section 4.2 presents some final remarks.

After a. rigorous analysis of Algorithm 1 we detected two natural points suit­
able for parallelization. Those two points are: the computation of all the possible
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Fig. 5. The automaton built by the tableau for the Response Pattern

antecedents and consequents and tagging all the possible matches (the For Each 
constructor from lines 4 to 6) and checking wether any consequent has been 
matched by the last move (line 9). These are individual, orthogonal and repet­
itive tasks that can be easily divided into different nodes to be realized and 
then the main algorithm can continue once every one is finished. For example, 
the calculation of all the possible matches for every situation i] can be done in 
parallel where each node calculates the possible matching in antecedent and con­
sequents for every T). Once all the nodes are finished the results are sent to the 
main algorithm which simple merges the results. Similarly, for the calculation in 
line 9 the detection of any matching in the consequent can be done in parallel 
where a. node contemplates one situation. When the nodes are finished the main 
algorithm can obtain the final result. The parallel pseudo-code for the parallel 
implementation of the tableau is depicted in Algorithm 2.

1 Algorithm Parallel Sticc(S : State, m : minterm) : set of states;
2 Precondition : m A obligations(S) is satisfiable;
3 newSits := 0;

4 Prepa/reNodes(N-i, Nz,..., Nm)-,
5 DistribiiteAdvancesCalciition(N-i, Nz,..., Nm, Situations(S));
6 JoinNodes(Ni, Nz,..., Nm,newSits) ;
7 trapSituation : € newSits MiNj € [L./i] gj : A —> Cj € g A A = A A Cj it

is not a configuration of Cj;
8 Prepa/reN ode slJN-v, Nz,..., Nm)-,
9 DistributeGoalMatched(Ni, Nz,..., Nm, S ituations(S));

10 JoinNodes^Ni, Nz,..., Nm , goalMatched) ;
11 goal Matched := (3j (goalmatchedy\)) A (-trapS itaiat ion) ;
12 return { fnewSits, GM, Obligations') such that

GM -A- goalMatched A GM = true —> 3j (goalmatchedy\) A Obligations =
Obligations(S) A /\jeI ^(Gy) A GM = false —> Obligations = Obligations(S) 

Algorithm 2: Parallel Successor states Calculation

Line 4 in Algorithm 2 deals with the nodes preparation and setup, a. typical 
task in parallel systems. Line 5 is in charge of distributing the task of obtaining 
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the advances of antecedent and consequents in each situation 77 among the nodes. 
Finally, in Line 6 all the tasks done by the nodes is united and the new situations 
set represented by the variable newSits is obtained. Similarly, lines 8 to 10 deal 
with the parallelization of goal calculation and verify if any antecedent has been 
satisfied.

4.1 Algorithm Implementation and Evaluation

We developed three different implementation for the parallel algorithm delin­
eated in Algorithm 2. We choose Java related tools since our algorithm is im­
plemented in that programming language. In the first one we simply use Java 
predefined constructors to deal with parallelism: threads. The others two version 
handle different parallel libraries for Java: Open MPI [33] and MP J Express 
[29].

Open MPI is one of the most popular implementations of MPI, the Message- 
Passing Interface, which is one of the predominant programming paradigm for 
parallel applications on distributed memory computers [33], This work enables 
Java MPI bindings which have been included in the Open MPI distribution, 
exposing MPI functionality to Java programmers. It can be easily downloaded 
and installed from its website3. The implementation of the algorithm was very 
straightforward since parallel constructors application is declarative and intu­
itive.

3 https://www.open-mpi.org/
4 http://mpj-express.org/

The third version was implemented using MP J Express [29], an open source 
Java message passing library that enables the possibility of introducing parallel 
instructions in Java programs. As in the previous case, it can be easily down­
loaded and installed from its website4. The setup and integration did not result 
in an straightforward task since several difficulties arose when trying to inte­
grate it to our Java framework (for example, library versions incompatibility). 
However, once these not that unexpected situations when integrating software 
tools were solved, the codification of the algorithm was achieved without major 
problems.

We conducted a typical performance comparison including the three versions 
of the parallel tableau and also its sequential version. We employ as case of 
study the verification of the MS-NNS protocol specified in [3]. In few words, this 
protocol was introduced as a lightweight option to provide authenticated and 
confidential communication between a server and a client over a TCP connection 
protocol. In [3] both the server and the client behavior is specified and verified. 
For this performance evaluation we consider four cases. In all of them we employ 
one server whereas the amount of clients was different in each one. In other words, 
we consider these four cases: Case 1: One server and two clients ; Case 2: One 
server and four clients; Case 3: One server and eight clients and Case One 
server and sixteen clients. The results are shown in Table 1 .
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Table 1. Performance Evaluation

Case Number Sequential Threads MPJ Open MPI
1 60 sec 48 sec 53 sec 50 sec
2 109 sec 80 sec 60 sec 70 sec
3 360 sec 115 sec 70 sec 83 sec
4 600 sec 143 sec 80 sec 98 sec

4.2 Some Observations

It can be noted from the results in Table 1 that there is a considerable gain 
when the parallel version of the tableau is employed. The threads version had 
the best performance in the first case. We believe that the node preparation and 
other necessary parallel settings was too much overload for a simple case with 
only two clients. In the following cases the Open MPI and the MPJ Express 
versions dethrone the threads implementation and the difference increases when 
more complex case studies are presented. Between the Open MPI and the MPJ 
Express the latter version turns out to be slightly more competitive regarding 
performance.

We are aware there are several threads to the validity of this initial and ex­
ploratory results. First of all, we assume there are always lazy nodes available to 
receive new tasks. It would be interesting to analyze scenarios where this condi­
tion is not necessarily meet since more parallel overhead is naturally expected. 
Secondly, in all the analyzed cases a similar load balance was assigned to each 
node. It might occur a different setting in other contexts and examples making 
necessary to introduce some load balancer strategies who will certainly impact 
in the performance of the algorithm. Finally, more examples are also needed to 
further validate this initial experimentation.

However, taking all these facts into consideration we believe the results are 
promising enough to continue exploring this line of research.

5 Related and Future Work

Several approaches aim to adapt current formal verification techniques to BIG 
DATA systems.

In [10,15] a interesting framework for distributed CTL (computation tree 
logic) model checker is presented. They present a novel architecture employing 
HADOOP MAPREDUCE as its computational engine. They provide a very 
solid empiric evaluation with several case of studies employing Amazon Elastic 
MapReduce [15] and the GRID5000 cloud infrastructure [6], For generating and 
building distributed state space exploration they rely on a framework called 
Mardigras [9]. We would definitely like to explore in future work the combination 
of these advanced tools with our specification language FVS.

Other approaches like [11,13, 7, 8,14] provide some tools implementing differ­
ent versions of parallel model checking algorithms for both linear and branching­
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time properties. We believe that a natural continuation of this work is to provide 
the automata build by the parallel tableau as the behavioral properties to be 
checked in any of the mentioned approaches. In particular, we would like to ex­
plore the integration of FVS with the parallel implementation of MTSA (The 
Modal Transition System Analyser) [12],

In a different direction, work like [20, 28] employ metamorphic testing as an 
alternative to validate BIG DATA results. We would like to extend this notion to 
formally model check behavior pursuing the notion of “metamorphic” properties.

6 Conclusions

In this work we present a parallel implementation of the tableau algorithm which 
translates FVS scenarios into Buehl automata. Actually, three different imple­
mentations were developed and analyzed taking as a case of study an industrial 
relevant protocol with complex behavior. This new version of the algorithm al­
lows FVS specifications to be constructed in a much efficient way, easing the 
adoption of our language to model and verify behavior in BIG DATA systems. 
The next step in this direction is to combine FVS specification with parallel 
and distributed architectures which are the most frequent ones in BIG DATA 
systems.
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