
ISBN 978-987-4417-90-9 360

A Parallel Tableau Algorithm for BIG DATA
Verification

Fernando Asteasuain1,2 and Luciana Rodríguez Caldeira2

1 Universidad Nacional de Avellaneda, Argentina
fasteasuainSundav.edu.ar

2 Universidad Abierta Interamericana - Centro de Altos Estudios
CAETI, Argentina

luciana.rodriguezcaldeiraOalumnos.uai.edu.ar

Abstract. BIG DATA systems are becoming more and more present
in our everyday life generating data and information that needs to be
explored and analyzed. In this sense, formal verification tools and tech­
niques must provide solutions to face with these new challenges since
they been pointed out as one of the most needed software engineering
activities to consolidate BIG DATA modern systems. In this work we
present a parallel implementation of a tableau algorithm aiming to im­
prove the performance of our formal verification scheme. The pursued
objective behind this transformation is to adapt our framework to deal
with BIG DATA systems.

Keywords: BIG DATA, Formal Verification, Parallel Programming

1 Introduction

Modern systems reside in a world where everything is connected and informa­
tion is generated, consumed and exchanged at a surprisingly increasing growth
rate. This enormous amount of data and information needs to be explored and
analyzed, activities that originated new disciplines such as BIG DATA [34,16] or
Data Science [32] whereas other important areas such as Artificial Intelligence
turned their attention into this topic applying techniques such as Automated
Reasoning [27], Machine Learning [2] or Neural Networks [22],

In the last years the Software Engineering community did also make an effort
to leverage on this emerging topic. Several works like [24,15, 26, 23, 30, 25] thor­
oughly present a complete state of the art stating how software engineering tools,
methodologies and techniques are applied and adapted to deal with BIG DATA
implications, covering all the very well known software developing phases, from
requirements gathering to product release, including modeling, design, testing,
validation and verification of Big Data Software Systems. In particular, all the
mentioned approaches pinpoint the urgent need of a new arising of more re­
search lines focusing on the formal verification of BIG DATA systems. This is a
very challenging path to take since it involves dealing with rigorous performance

CACIC 2020
DIIT UNLaM / Red UNCI

ISBN 978-987-4417-90-9 361

requirements in a context where data and information is highly informal and
unstructured [25,24,20],

In this sense, approaches like [10] try to expand current formal verification
tools such as model checking [17] to cope with new architectures for BIG DATA
systems such as Cloud Computing [19] and distributed environments. Other ap­
proaches involves a classic migration from sequential to parallel model checking
[11,13,7,8,14], However, a prior step in the formal verification road has been
somehow neglected, which is the way the behavioral properties to be verified in
the model checker are built and specified [31,18],

Given this context in this work we present a parallel implementation of a
tableau algorithm which translates graphical scenarios specified in the FVS for­
mal specification language [3,4] describing behavioral properties into Biichi Au­
tomata. The automata built by the tableau can latter be used to feed a model
checker in order to perform verification tasks [3], FVS (Feather weight Visual
Scenarios) is a formal and graphical specification language which can be used to
specify, verify and synthesize behavior [4,5], It denotes a very rich and expres­
sive notation (being for example more expressive than Linear Temporal Logics)
and linear as well as branching-time type properties can be specified [3], In or­
der to adapt FVS for formal verification in BIG DATA system in this work we
parallelized the tableau algorithm. This new parallel implementation of
the tableau enables the possibility for FVS to make a solid contribu­
tion for the formal verification phase applied to BIG DATA systems.
We developed three different implementations of the tableau algorithm, one us­
ing Java threads and other two employing two well known libraries for parallel
programming: Open MPI [33] and MP J Express [29], Since our framework is
developed using the Java programming language we relied on Java oriented
tools. We compared the three versions against each other and against the se­
quential version of the tableau taking as a case study a complex and industrial
relevant protocol verification: the MS-NNS protocol [1], a lightweight option to
provide authenticated and confidential communication between a server and a
client over a TCP connection. Although this early results are preliminaries, we
believe are encouraging enough to continue exploring FVS’s contributions for
formal verification in BIG DATA systems.

The rest of this paper is structured as follows. Section 2 briefly presents
the FVS specification language and Section 3 introduces the sequential version
of the tableau. Section 4 exhibits the details behind the parallelization of the
tableau, considering three different versions, a performance comparison between
them and some final observations. Finally, Section 5 comments some related and
future work while Section 6 concludes this work highlighting its conclusions.

2 Feather weight Visual Scenarios

In this section we will informally describe the standing features of FVS. The
reader is referred to [3] for a formal characterization of the language. FVS is a
graphical language based on scenarios. Scenarios are partial order of events, con­

CACIC 2020
DIIT UNLaM / Red UNCI

ISBN 978-987-4417-90-9 362

sisting of points, which are labeled with a. logic formula, expressing the possible
events occurring at that point, and arrows connecting them. An arrow between
two points indicates precedence. For instance, in figure l-(a) A-event precedes
S-event. In figure 1-b the scenario captures the very next S-event following an
A-event, and not any other S-event. Events labeling an arrow are interpreted
as forbidden events between both points. In figure 1-c A-event precedes S-event
such that C-event does not occur between them. Finally, FVS features aliasing
between points. Scenario in 1-d indicates that a. point labeled with A is also
labeled with A A B. It is worth noticing that A-event is repeated on the labeling
of the second point just because of FVS formal synta.xis.

J B A B•----** ••--------------

(a) Precedence (b) Next

4 B
w Not(C* »•

(c) Restricting behavior

A J and B

(d) Aliasing points

Fig. 1. Basic Elements in FVS

We now introduce the concept of FVS rules, a. core concept in the language.
Roughly speaking, a. rule is divided into two parts: a. scenario playing the role
of an antecedent and at least one scenario playing the role of a. consequent. The
intuition is that whenever a. trace “matches” a. given antecedent scenario, then
it must also match at least one of the consequents. In other words, rules take
the form of an implication: an antecedent scenario and one or more consequent
scenarios. Graphically, the antecedent is shown in black, and consequents in grey.
Since a. rule can feature more than one consequent, elements which do not belong
to the antecedent scenario are numbered to identify the consequent they belong
to. An example is shown in figure 2. The rule describes requirements for a. valid
writing pipe operation. For each write event, then it must be the case that either
the pipe did not reach its maximum capacity since it was ready to perform (Con­
sequent 1) or the pipe did reach its capacity, but another component performed
a. read over the pipe (making the pipe available again) afterwards and the pipe
capacity did not reach again its maximum (Consequent 2).

3 Tableau Algorithm: From FVS Scenarios to Biichi
Automata

We now present some basic concepts to understand the tableau algorithm while
the reader is referred to [3] for a. more detailed version of it. From a. formal
point of view, FVS scenarios can be defined as morphisms from the antecedent
to the consequent. The algorithm relies on the notion of situations [3], In few
words, a. situation represents for a. given rule possible combinations of partial
matches from the antecedent to the consequent. Consider the following example

CACIC 2020
DIIT UNLaM / Red UNCI

ISBN 978-987-4417-90-9 363

Fig. 2. An F VS rule example

FFrzte
e

in figure 3. In this case, a. rule with two consequents is shown. Furthermore,
there are three partial matches for consequent one, and two for consequent two.
Therefore, 771 consists of the three morphisms in the first column (si, <7i, <7i),
whereas 772 consists of the two morphisms in the second column

Fig. 3. A situation example

V

Given a. rule R, the tableau builds a. Biichi Automaton B = (E, S, S°, A, F)
such that E constitutes minterms over Er and the set of states S are triples
(Tr x bool x PC(Er)), where PCfE) is a. function that labels each point with
a. given formula. The set Tr associated to a. state (a. set of situations 7/1. de­
noted situations (S), symbolically represents all the possible combination of par­
tial matches obtained up to that state from the antecedent to each consequent.
The second term of the triple identify accepting states. This boolean variable
is set to true when the pattern is completely matched and will make the state
transient. Finally, a. third element is needed to maintain future obligations of
the trace. These formulas are needed when rules predicate about conditions that
must hold until the end of the trace.

The pseudo-code sketched in Algorithm 1 computes the successor states for
transition relation A. Starting from the initial state ((0, false,true')), the au­
tomata. will try to incrementally “construct” the pattern as events, represented
by minterms, occurs. For every minterm, algorithm 1 computes all possible
matchings considering matchings in the antecedent and also in each consequent.
This is obtained trough two auxiliary algorithms, aduanceAntecedent(Yme 5) and
advanceConsequent (line 6). Line 7 analyzes if any successor reaches a. trap sit.-

CACIC 2020
DIIT UNLaM / Red UNCI

ISBN 978-987-4417-90-9 364

nation, a. situation where the antecedent has been matched (a. morphism such
that A = A), but matching for all consequents is known unfeasible. Lines 8
and 9 check if any consequent has been matched by the last move. This is,
goa,lmatched\i\ = true if and only if consequent Cf is matched. Line 10 analyzes
if the next state is an accepting state: a. consequent has been matched and it is
not a. trap situation. Finally, line 11 returns the expected output.

1 Algorithm Succ(S : State,m : minterm') : set of states;
2 Precondition : m A obligations(S) is satisfiable;
3 newSits := 0;
4 foreach 77 E Situations(S) do
5 newSits := add(newSits,aduanceAntecedent(g,m')');
6 newSits := ad.dfnewSits, advanceConsequent(q, m));

7 trapSituation : E newSits SiAj E [1../?] <7’ : A —> C* E 77 A A = A A C'J it
is not a. configuration of Cf;

8 foreach j E [1..??] do
9 goalmalciu d i := S?7 E situations (S) A

g) : À G* E i] AC* Cj U P* Am E (RfIC*)) A C* U A* = Cj;

10 goalMatched := (3j (<7oa/777atc/?ed[j])) A (-vtrapSituation') ;
11 return { (newSits, GM, Obligations') such that

GM —>■ goalMatched A GM = true —>■ 3j (goalmat ched(j\) A Obligations =
Obligations (S') A /\jcI Tt(Cj) A GM = false —>■ Obligations = Obligations(S)

Algorithm 1: Successor states

As an example of the application of the algorithm consider the FVS rule in
Figure 4, which represents a. classic instantiation of the Response pattern [21],
The automaton built by the tableau is depicted in Figure 5.

o
—► 1

1

p

Fig. 4. An FVS Rule for the Response Pattern

4 Parallel Tableau Implementation

We now describe the main features of the parallel algorithm. We developed three
different versions of it, whose implementations details are presented in Section
4.1. Finally, Section 4.2 presents some final remarks.

After a. rigorous analysis of Algorithm 1 we detected two natural points suit­
able for parallelization. Those two points are: the computation of all the possible

CACIC 2020
DIIT UNLaM / Red UNCI

ISBN 978-987-4417-90-9 365

Fig. 5. The automaton built by the tableau for the Response Pattern

antecedents and consequents and tagging all the possible matches (the For Each
constructor from lines 4 to 6) and checking wether any consequent has been
matched by the last move (line 9). These are individual, orthogonal and repet­
itive tasks that can be easily divided into different nodes to be realized and
then the main algorithm can continue once every one is finished. For example,
the calculation of all the possible matches for every situation i] can be done in
parallel where each node calculates the possible matching in antecedent and con­
sequents for every T). Once all the nodes are finished the results are sent to the
main algorithm which simple merges the results. Similarly, for the calculation in
line 9 the detection of any matching in the consequent can be done in parallel
where a. node contemplates one situation. When the nodes are finished the main
algorithm can obtain the final result. The parallel pseudo-code for the parallel
implementation of the tableau is depicted in Algorithm 2.

1 Algorithm Parallel Sticc(S : State, m : minterm) : set of states;
2 Precondition : m A obligations(S) is satisfiable;
3 newSits := 0;

4 Prepa/reNodes(N-i, Nz,..., Nm)-,
5 DistribiiteAdvancesCalciition(N-i, Nz,..., Nm, Situations(S));
6 JoinNodes(Ni, Nz,..., Nm,newSits) ;
7 trapSituation : € newSits MiNj € [L./i] gj : A —> Cj € g A A = A A Cj it

is not a configuration of Cj;
8 Prepa/reN ode slJN-v, Nz,..., Nm)-,
9 DistributeGoalMatched(Ni, Nz,..., Nm, S ituations(S));

10 JoinNodes^Ni, Nz,..., Nm , goalMatched) ;
11 goal Matched := (3j (goalmatchedy\)) A (-trapS itaiat ion) ;
12 return { fnewSits, GM, Obligations') such that

GM -A- goalMatched A GM = true —> 3j (goalmatchedy\) A Obligations =
Obligations(S) A /\jeI ^(Gy) A GM = false —> Obligations = Obligations(S)

Algorithm 2: Parallel Successor states Calculation

Line 4 in Algorithm 2 deals with the nodes preparation and setup, a. typical
task in parallel systems. Line 5 is in charge of distributing the task of obtaining

CACIC 2020
DIIT UNLaM / Red UNCI

ISBN 978-987-4417-90-9 366

the advances of antecedent and consequents in each situation 77 among the nodes.
Finally, in Line 6 all the tasks done by the nodes is united and the new situations
set represented by the variable newSits is obtained. Similarly, lines 8 to 10 deal
with the parallelization of goal calculation and verify if any antecedent has been
satisfied.

4.1 Algorithm Implementation and Evaluation

We developed three different implementation for the parallel algorithm delin­
eated in Algorithm 2. We choose Java related tools since our algorithm is im­
plemented in that programming language. In the first one we simply use Java
predefined constructors to deal with parallelism: threads. The others two version
handle different parallel libraries for Java: Open MPI [33] and MP J Express
[29].

Open MPI is one of the most popular implementations of MPI, the Message-
Passing Interface, which is one of the predominant programming paradigm for
parallel applications on distributed memory computers [33], This work enables
Java MPI bindings which have been included in the Open MPI distribution,
exposing MPI functionality to Java programmers. It can be easily downloaded
and installed from its website3. The implementation of the algorithm was very
straightforward since parallel constructors application is declarative and intu­
itive.

3 https://www.open-mpi.org/
4 http://mpj-express.org/

The third version was implemented using MP J Express [29], an open source
Java message passing library that enables the possibility of introducing parallel
instructions in Java programs. As in the previous case, it can be easily down­
loaded and installed from its website4. The setup and integration did not result
in an straightforward task since several difficulties arose when trying to inte­
grate it to our Java framework (for example, library versions incompatibility).
However, once these not that unexpected situations when integrating software
tools were solved, the codification of the algorithm was achieved without major
problems.

We conducted a typical performance comparison including the three versions
of the parallel tableau and also its sequential version. We employ as case of
study the verification of the MS-NNS protocol specified in [3]. In few words, this
protocol was introduced as a lightweight option to provide authenticated and
confidential communication between a server and a client over a TCP connection
protocol. In [3] both the server and the client behavior is specified and verified.
For this performance evaluation we consider four cases. In all of them we employ
one server whereas the amount of clients was different in each one. In other words,
we consider these four cases: Case 1: One server and two clients ; Case 2: One
server and four clients; Case 3: One server and eight clients and Case One
server and sixteen clients. The results are shown in Table 1 .

CACIC 2020
DIIT UNLaM / Red UNCI

https://www.open-mpi.org/
http://mpj-express.org/

ISBN 978-987-4417-90-9 367

Table 1. Performance Evaluation

Case Number Sequential Threads MPJ Open MPI
1 60 sec 48 sec 53 sec 50 sec
2 109 sec 80 sec 60 sec 70 sec
3 360 sec 115 sec 70 sec 83 sec
4 600 sec 143 sec 80 sec 98 sec

4.2 Some Observations

It can be noted from the results in Table 1 that there is a considerable gain
when the parallel version of the tableau is employed. The threads version had
the best performance in the first case. We believe that the node preparation and
other necessary parallel settings was too much overload for a simple case with
only two clients. In the following cases the Open MPI and the MPJ Express
versions dethrone the threads implementation and the difference increases when
more complex case studies are presented. Between the Open MPI and the MPJ
Express the latter version turns out to be slightly more competitive regarding
performance.

We are aware there are several threads to the validity of this initial and ex­
ploratory results. First of all, we assume there are always lazy nodes available to
receive new tasks. It would be interesting to analyze scenarios where this condi­
tion is not necessarily meet since more parallel overhead is naturally expected.
Secondly, in all the analyzed cases a similar load balance was assigned to each
node. It might occur a different setting in other contexts and examples making
necessary to introduce some load balancer strategies who will certainly impact
in the performance of the algorithm. Finally, more examples are also needed to
further validate this initial experimentation.

However, taking all these facts into consideration we believe the results are
promising enough to continue exploring this line of research.

5 Related and Future Work

Several approaches aim to adapt current formal verification techniques to BIG
DATA systems.

In [10,15] a interesting framework for distributed CTL (computation tree
logic) model checker is presented. They present a novel architecture employing
HADOOP MAPREDUCE as its computational engine. They provide a very
solid empiric evaluation with several case of studies employing Amazon Elastic
MapReduce [15] and the GRID5000 cloud infrastructure [6], For generating and
building distributed state space exploration they rely on a framework called
Mardigras [9]. We would definitely like to explore in future work the combination
of these advanced tools with our specification language FVS.

Other approaches like [11,13, 7, 8,14] provide some tools implementing differ­
ent versions of parallel model checking algorithms for both linear and branching­

CACIC 2020
DIIT UNLaM / Red UNCI

ISBN 978-987-4417-90-9 368

time properties. We believe that a natural continuation of this work is to provide
the automata build by the parallel tableau as the behavioral properties to be
checked in any of the mentioned approaches. In particular, we would like to ex­
plore the integration of FVS with the parallel implementation of MTSA (The
Modal Transition System Analyser) [12],

In a different direction, work like [20, 28] employ metamorphic testing as an
alternative to validate BIG DATA results. We would like to extend this notion to
formally model check behavior pursuing the notion of “metamorphic” properties.

6 Conclusions

In this work we present a parallel implementation of the tableau algorithm which
translates FVS scenarios into Buehl automata. Actually, three different imple­
mentations were developed and analyzed taking as a case of study an industrial
relevant protocol with complex behavior. This new version of the algorithm al­
lows FVS specifications to be constructed in a much efficient way, easing the
adoption of our language to model and verify behavior in BIG DATA systems.
The next step in this direction is to combine FVS specification with parallel
and distributed architectures which are the most frequent ones in BIG DATA
systems.

References

1. [ms-nns]: .net negotiatestream protocol specification v2.0.
http://msdn.microsoft.com/en-us/library/cc236723.aspx, July 2008.

2. E. Alpaydin. Introduction to machine learning. MIT press, 2020.
3. F. Asteasuain and V. Braberman. Declaratively building behavior by means of

scenario clauses. Requirements Engineering, 22(2):239-274, 2017.
4. F. Asteasuain, F. Calonge, and M. Dubinsky. Exploring specification pattern based

behavioral synthesis with scenario clauses. In CACIC, 2018.
5. F. Asteasuain, F. Calonge, and P. Gamboa. Behavioral synthesis with branching

graphical scenarios. In CONAIISI, 2019.
6. D. Balouek, A. C. Amarie, G. Charrier, F. Desprez, E. Jeannot, E. Jeanvoine,

A. Lebre, D. Margery, N. Niclausse, L. Nussbaum, et al. Adding virtualization
capabilities to the gridSOOO testbed. In International Conference on Cloud Com­
puting and Services Science, pages 3-20. Springer, 2012.

7. J. Barnat, L. Brim, M. Ceska, and P. Rockai. Divine: Parallel distributed model
checker. In 2010 ninth PDMC, pages 4-7. IEEE, 2010.

8. A. Bell and B. R. Haverkort. Sequential and distributed model checking of petri
nets. STTT journal, 7(l):43-60, 2005.

9. C. Bellettini, M. Camilli, L. Capra, and M. Monga. Mardigras: Simplified building
of reachability graphs on large clusters. In RP workshop, pages 83-95, 2013.

10. C. Bellettini, M. Camilli, L. Capra, and M. Monga. Distributed ctl model checking
using mapreduce: theory and practice. CCPE, 28(ll):3025-3041, 2016.

11. M. C. Boukala and L. Petrucci. Distributed model-checking and counterexample
search for ctl logic. IJSR 3, 3(l-2):44-59, 2012.

CACIC 2020
DIIT UNLaM / Red UNCI

http://msdn.microsoft.com/en-us/library/cc236723.aspx

ISBN 978-987-4417-90-9 369

12. M. V. Brassesco. Síntesis concurrente de controladores para juegos
definidos con objetivos de generalized reactivity(l). Tesis de Licenciatura.,
http://de.sigedep.exactas.uba.ar/media/academic/grade/thesis/tesis_18.pdf UBA
FCEyN Dpto Computación 2017.

13. L. Brim, I. Cerná, P. Moravec, and J. Simsa. Accepting predecessors are better
than back edges in distributed ltl model-checking. In International Conference on
Formal Methods in Computer-Aided Design, pages 352-366. Springer, 2004.

14. L. Brim, K. Yorav, and J. Zídková. Assumption-based distribution of ctl model
checking. STTT, 7(l):61-73, 2005.

15. M. Camilli. Formal verification problems in a big data world: towards a mighty
synergy. In ICSE, pages 638-641, 2014.

16. M. Chen, S. Mao, and Y. Liu. Big data: A survey. Mobile networks and applications,
19 (2): 171—209, 2014.

17. E. M. Clarke, O. Grumberg, and D. Peled. Model checking. MIT press, 1999.
18. E. M. Clarke, W. Klieber, M. Novácek, and P. Zuliani. Model checking and the

state explosion problem. In LASER School, pages 1-30. Springer, 2011.
19. T. Dillon, C. Wu, and E. Chang. Cloud computing: issues and challenges. In 2010

AINA, pages 27-33. Ieee, 2010.
20. J. Ding, D. Zhang, and X.-H. Hu. A framework for ensuring the quality of a big

data service. In 2016 SCC, pages 82-89. IEEE, 2016.
21. M. Dwyer, M. Avrunin, and M. Corbett. Patterns in property specifications for

finite-state verification. In ICSE, pages 411-420, 1999.
22. M. H. Hassoun et al. Fundamentals of artificial neural networks. MIT press, 1995.
23. O. Hummel, H. Eichelberger, A. Giloj, D. Werle, and K. Schmid. A collection of

software engineering challenges for big data system development. In SEAA, pages
362-369. IEEE, 2018.

24. V. D. Kumar and P. Alencar. Software engineering for big data projects: Domains,
methodologies and gaps. In 2016 IEEE International Conference on Big Data (Big
Data), pages 2886-2895. IEEE, 2016.

25. R. Laigner, M. Kalinowski, S. Lifschitz, R. S. Monteiro, and D. de Oliveira. A sys­
tematic mapping of software engineering approaches to develop big data systems.
In SEAA, pages 446-453. IEEE, 2018.

26. C. E. Otero and A. Peter. Research directions for engineering big data analytics
software. IEEE Intelligent Systems, 30(1): 13—19, 2014.

27. A. J. Robinson and A. Voronkov. Handbook of automated reasoning, volume 1.
Gulf Professional Publishing, 2001.

28. S. Segura, G. Fraser, A. B. Sanchez, and A. Ruiz-Cortés. A survey on metamorphic
testing. IEEE Transactions on software engineering, 42(9):805-824, 2016.

29. A. Shafi, B. Carpenter, and M. Baker. Nested parallelism for multi-core HPC
systems using java. J. Parallel Distributed Comput., 69(6):532—545, 2009.

30. P. A. Sri and M. Anusha. Big data-survey. Indonesian Journal of Electrical Engi­
neering and Informatics (IJEEI), 4(l):74-80, 2016.

31. A. Valmari. The state explosion problem. In Aduanced Course on Petri Nets, pages
429-528. Springer, 1996.

32. W. Van Der Aalst. Data science in action. In Process mining, pages 3-23. Springer,
2016.

33. O. Vega-Gisbert, J. E. Roman, and J. M. Squyres. Design and implementation of
java bindings in open mpi. Parallel Computing, 59:1-20, 2016.

34. P. Zikopoulos, C. Eaton, et al. Understanding big data: Analytics for enterprise
class hadoop and streaming data. McGraw-Hill Osborne Media, 2011.

CACIC 2020
DIIT UNLaM / Red UNCI

http://de.sigedep.exactas.uba.ar/media/academic/grade/thesis/tesis_18.pdf

